Help | Search Robot | Login

Eigenvalues and Eigenvectors

Remaining Time: Unlimited

Eigenvalues and Eigenvectors

Definition:

Let A be an n×n matrix and let Xn be a nonzero vector for which

AX=λX

for some scalar λ. Then λ is called an eigenvalue of the matrix A and X is called an eigenvector of A associated with λ, or a λ-eigenvector of A.

The set of all eigenvalues of an n×n matrix A is denoted by σA and is referred to as the spectrum of A.

 

The existence of an Eigenvector

Let A be an n×n matrix and suppose  det λI A = 0  for some λ.
Then λ is an eigenvalue of A and thus there exists a nonzero vector Xn such that AX=λX.

The expression detλIA is a polynomial (in the variable x) called the characteristic polynomial of A, and   det λI A = 0   is called the characteristic equation. For this reason, we may also refer to the eigenvalues of A as characteristic values.


 

Check it out!

If the characteristic equation of a matrix A be λ2λ1, then

Multiplicity of an Eigenvalue

Let A be an n×n matrix with characteristic polynomial given by  det λI A  . Then, the multiplicity of an eigenvalue λ of A is the number of times λ occurs as a root of that characteristic polynomial.

For example, suppose the characteristic polynomial of A is given by λ22. Solving for the roots of this polynomial, we set λ22=0 and solve for λ. We find that λ=2 is a root that occurs twice. Hence, in this case, λ=2 is an eigenvalue of A of multiplicity equal to 2.

 

Finding Eigenvalues and Eigenvectors

Let A be an n×n matrix.

  1. First, find the eigenvalues λ of A by solving the equation  det λI A = 0
  2. For each λ, find the basic eigenvectors X0 by finding the basic solutions to λIAX=0.

To verify your work, make sure that AX=λX for each λ and associated eigenvector X.


Check it out!

Find the eigenvalues and eigenvectors of the matrix 4007.

 

The field below accepts a list of numbers or formulas separated by commas. For example, 2, 4, x+1, x1.The order of the list does not matter.

 

Eigenvalues =

Preview  

Eigenvector(w.r.t smaller eigen value) =

 

  

Eigenvector(w.r.t larger eigen value) =

 

  

  

SectionAttempt 1 of 1
 

 

Check it out!

Find the multiplicity of the largest eigenvalue for the matrix 612036002.

 

 
Build Number : 19ea507